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Mathematics of Optimization and Scaling
for the Practicing Chromatographer

Mark A. Stone

Dow Pharmaceutical Sciences Inc., Petaluma, California, USA

Abstract: A substantial body of literature exists on the issues of optimization and

scaling in HPLC. However, much of this literature is written in a theoretical manner

such that it is difficult for the practicing chromatographer to apply the conclusions to

problems in the laboratory. In addition, the analyst would have to search numerous

publications to find all of the formulas that are needed when optimizing or scaling a

method. In this review, an attempt is made to address these topics in a manner that

is easy to follow, with all equations given in the form that is most convenient for

the laboratory chemist, and with all necessary formulas available in a single source.

The focus of the review is on the mathematical concepts relevant to optimization

and scaling. Issues that are generally not approached mathematically, such as the

selection of the mobile phase and stationary phase, are not discussed.

Keywords: Optimization, Scaling, van Deemter effects, Extra-column effects, Relative

retention times, Linear gradients, Dwell volume, Isocratic segments, Method transfer

Part I: Basic Optimization and Scaling Relationships

Part II: Gradient Scaling: Keeping Relative Retention Times Constant

with Gradient Methods

Part III: Applying the Basic Relationships to Gradient Methods

INTRODUCTION

There are several factors that govern the selection or modification of the linear

velocity, the column length, the column diameter, and the diameter of the
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stationary phase particle. These factors include optimizing the efficiency and res-

olution of the method, increasing the speed of analysis, increasing sensitivity, or

reducing the amount of mobile phase consumed and waste generated. It is then

important to consider what scaling may be needed, in order to minimize band

broadening due to extra-column effects. The purpose of this article is to present

the relevant issues in a straightforward manner, with all relationships ultimately

given in terms of linear velocity or flow rate, column length, column diameter,

and particle diameter, such that they can be easily applied in the laboratory.

In Part II, procedures will be discussed for keeping relative retention

times constant with gradient methods. This is important once a gradient sep-

aration has been developed to the point where the analyst wants to maintain

the relative retention times of the peaks constant while any additional optim-

ization steps are carried out. These considerations will also be useful when

optimizing a method where peak identification based on relative retention

times has already been established. In order to keep the relative retention

times constant, it will be necessary to make adjustments with respect to the

gradient ramps as well as the system dwell volume and any isocratic hold

segments in the method.

In Part III, we discuss the application of the basic relationships (addressed

in Part I) to gradient methods. Because of the more complex interdependency

of variables, gradient methods can be more difficult to deal with. However, it

will be shown that, when the relative retention times are kept constant (as per

the procedures discussed in Part II), the average gradient capacity factor, the

gradient compression factor, and the optimal linear velocity will also remain

constant and, hence, the situation is considerably simplified.

The discussion is somewhat lengthy, with detailed information provided

for the interested reader. However, optimization and scaling are ultimately a

matter of utilizing a handful of simple formulas. An effort was made to

include all critical relationships, as well as guidelines regarding their appli-

cation, in the Summary section for easy reference.

PART I: BASIC OPTIMIZATION AND SCALING

RELATIONSHIPS

Preliminaries: Plate Height and Pressure Drop1

A column plate height term (H) will appear in most of the formulas discussed

in this article; therefore, a brief discussion is in order. The value of the column

plate height is given by the van Deemter equation, which measures the

1This section assumes that the optimal linear velocity of a packed column does not

change as a function of column diameter, as predicted by the van Deemter equation.

This assumption is valid as long as the ratio of column diameter to particle diameter

is greater than a value of about 30: which is generally true for columns with

diameters . 0.2 mm.
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contribution of various kinetic processes to broadening of the chromato-

graphic peaks. Equation (1) gives a form of the van Deemter equation

utilized by Scott;[1] where l is a packing factor; dp is the particle diameter;

g is an obstruction factor; DS and DM are the diffusivities of the analyte in

the stationary and mobile phases, respectively; df is the thickness of the

stationary phase film; u is the linear velocity of the mobile phase; and f1(k)

and f2(k) represent expressions that are functions of the capacity factor (k).

H ¼ 2ldp þ 2gDM=uþ ½ f1ðkÞd
2
p=DM�uþ ½ f2ðkÞd

2
f =DS�u ð1Þ

It may be noted that the second term of the van Deemter equation is inversely

proportional to linear velocity, whereas the third and fourth terms are directly

proportional to linear velocity. This leaves us with the result, well known to

chromatographers, that the sharpest peaks will be obtained within a certain

linear velocity range, and that decreased performance will be obtained if the

linear velocity is either too far above or below this range. Therefore, in

many cases, we will want to adjust the flow rate so that we are working at,

or at least near, the optimal linear velocity (though this is not always the case).

Figure 1 shows van Deemter plots for four different particle diameters. The

dots indicate the minimum plate height and optimal linear velocity for each

curve. The optimal linear velocities are also summarized in Table 1, along

with the corresponding optimal flow rates for four different column diameters.

The complexity of the van Deemter equation makes it difficult to establish

simple rules for optimization and scaling. Therefore, the following two simpli-

fications will be very useful throughout the discussion. These relationships

Figure 1. Van Deemter Plots. Calculated for an analyte with a molecular weight of

150 g/mole, diffusivity in the mobile phase ¼ 7.5 � 1026 cm2/sec, diffusivity in the

stationary phase ¼ 3.0 � 1026 cm2/sec, k ¼ 5, stationary phase film thickness ¼ 20Å,

analysis temperature ¼ 258C. Calculations were based on a 100% aqueous mobile

phase. Linear velocities would become somewhat higher if acetonitrile were added

to the mobile phase and somewhat lower if methanol were added.
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were derived by minimization of the van Deemter equation.[2] Relationship (2)

serves as a good approximation when we are operating near the optimal linear

velocity, and relationship (3) is a good approximation when we are near the

minimum plate height.

uopt a 1=dp ð2Þ

Hopt a dp ð3Þ

The parameter over which the analyst has direct control is the mobile

phase flow rate. Therefore, it is important to understand the relationship

between the flow rate and the linear velocity. In this way, the flow rate can

be set so as to obtain the desired linear velocity. Equation (4) gives the

relationship between the flow rate (F) and linear velocity (u) of the mobile

phase and the inner diameter of the column (dc). The parameter 1 is the

total porosity, which is generally taken as 0.7 for porous packings and 0.4

for non-porous packings. The multiplier in the equation, simply serves to

put all parameters into convenient units.

FðmL=minÞ ¼ 0:15p1uðcm=secÞ dcðmmÞ2 ð4Þ

If we insert Equation (2) into Equation (4), and drop the constant terms, we

obtain the following general relationship for scaling flow rate. In cases where the

linear velocity of the original method is in the optimal range, and the analyst

wants to stay in the optimal range when changes are made, Equation (5)

indicates how the flow rate would need to be changed with respect to changes

in the column diameter or the diameter of the stationary phase particles.

Fopt a d2
c=dp ð5Þ

As we will see in the following section, there are times when the analyst

may choose to operate above the optimal linear velocity, such as when trying

Table 1. Optimal linear velocity and flow rate

Particle

diameter

(mm)

Optimal linear

velocity

(cm/sec)

Optimal flow rate (mL/min)

4.6 mm ID 3.2 mm ID 2 mm ID 1 mm ID

10 0.015 0.105 0.051 0.020 0.005

5 0.031 0.216 0.105 0.041 0.010

3 0.052 0.363 0.176 0.069 0.017

1.5 0.103 0.719 0.348 0.136 0.034

Based on the same conditions summarized under Figure 1. Flow rates were calcu-

lated using Equation (4) with a total porosity (1) of 0.7, which is generally considered

appropriate for porous particles. The shaded areas are not usable because the excessive

pressures that result from such small particles lead to substantial viscous heat gener-

ation. In these cases, smaller diameter columns must be used.
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to optimize the speed of analysis or when we want to increase sensitivity when

using a mass-sensitive detector. This is especially true when working with

small diameter particles, as they have fairly shallow van Deemter curves

above the optimal region (see Figure 1), and, therefore, one can have the

benefits of a higher velocity while observing only a small increase in the

plate height.

From the discussion above, it is clear that there can be substantial benefits

to working with smaller diameter particles. In fact, when trying to optimize an

analytical method, reducing the diameter of the stationary phase particles will

often be the preferred approach, as it simultaneously accomplishes several

beneficial effects (increased efficiency and resolution, increased speed,

increased sensitivity). In some cases, it will be beneficial to use higher

linear velocities or longer columns. All of these issues will be addressed in

the next section. For the present, it is important to realize that our ability to

make these changes will be limited by the maximum pressure tolerance of

the system. Therefore, it is necessary to consider the pressure drop across

the column. The Kozeny-Carmen equation demonstrates how the pressure

drop across the column is affected by the linear velocity (u) or the flow rate

(F) of the mobile phase, the mobile phase viscosity (h), the column length

(L), the column diameter (dc), and the diameter of the stationary phase

particles (dp). Equations (6) and (7) present forms of the pressure drop

equation in terms of the flow rate or linear velocity, respectively. These

equations are based on a flow resistance parameter of 1,000 (contained

within the multipliers), which is generally appropriate for liquid chromato-

graphy: for both porous and non-porous particles.[3] An effort was made to

put all parameters in their most commonly used units, with pressure given

in psi. Viscosity values for various pure solvents and solvent mixtures can

be found in Appendix II of Reference [4].

DPð psiÞ ¼
30778FðmL=minÞh ðcPÞLðcmÞ

dcðmmÞ2dpðmmÞ2
ð6Þ

DPð psiÞ ¼
14504 1 uðcm=secÞhðcPÞLðcmÞ

dpðmmÞ2
ð7Þ

If the constant terms are dropped, we can write the following simple propor-

tionalities:

DP a F L=d2
cd2

p ð8Þ

and

DP a uL=d2
p ð9Þ

If we consider the combined effects of Equations (5) and (6), it becomes

clear that, if we change the particle diameter and, at the same time, modify the
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flow rate so as to stay at the optimal linear velocity, the pressure will change

inversely with the particle diameter cubed: a very strong dependence!

Optimizing the Method

The topic of optimization in HPLC has been discussed in several previous

publications.[2,5 – 15] These articles offer a very thorough coverage of the

topic, and provide the foundation for our basic understanding. However,

these treatments are somewhat advanced, such that it is difficult for the chro-

matographer to readily apply the conclusions to problems in the laboratory.

The present discussion attempts to review these issues in a way that is con-

venient for the laboratory chemist, and with all final relationships expressed

in terms of the linear velocity or flow rate, the diameter and length of the

column, and the diameter of the stationary phase particles. These formulas

can be used to guide the initial development process or to optimize an

existing method.

Efficiency and Resolution

Efficiency (N) carries information about two of the factors that affect the

quality of a separation. Specifically, these are the kinetic factors that contrib-

ute to band broadening (i.e., the plate height, H) and the contribution of

column length (L) to the separation.

N ¼ L=H ð10Þ

Resolution (R) can be defined by Equation (11).[16] The resolution

equation contains all four of the factors that affect the quality of a separation,

including the effect of plate height and column length, as well as the extent to

which the analytes are retained (represented by the “k-term”), and the selec-

tivity of the system (represented by the “a-term”). The parameter k2 is the

capacity factor of the second peak in a given pair, and a is the separation

factor which is defined as the ratio of the two capacity factors (k2/k1).

Because it encompasses all the relevant parameters, the resolution is a more

relevant measure of the separation power that will be observed for a given

application.

R ¼

ffiffiffi
L
p

4
ffiffiffiffi
H
p

� �
k2

1þ k2

� �
a� 1

a

� �
ð11Þ

From these relationships, it is obvious that, to maximize efficiency and

resolution, we want to increase the length of the column and/or minimize

the plate height. From the previous section, we know that minimizing the

plate height is accomplished by reducing the diameter of the particles and

working at the optimal linear velocity.
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We can combine Equations (10) and (11) with Equation (3) to obtain

expressions in terms of the particle diameter. And, since the present focus is

not on the mobile and stationary phases, we can treat the k-term and the

a-term as constants. The result of these manipulations is:

N a L=dp ð12Þ

R a ðL=dpÞ
1=2

ð13Þ

Reducing the plate height (by reducing the particle diameter) is the preferred

method for increasing efficiency and resolution. However, the pressure drop

across the column will limit the extent to which we can do this. In cases

where the pressure is limiting, the remaining option is to increase both

column length and particle diameter, with the former increased by an

amount somewhat greater than the latter. This will simultaneously cause effi-

ciency and resolution to increase and the pressure drop to decrease. Therefore,

substantial increases in efficiency and resolution will be possible, along with

costs related to the longer column (reduced speed, reduced sensitivity,

increased solvent consumption) and the larger particle diameter (further

reduction in sensitivity).

The relationship of efficiency and resolution to particle diameter that is

implied by relationships (12) and (13) becomes less exact in cases where

we do not operate at (or near) the minimum plate height, as relationship (3)

is only a good approximation in this region.

Relationships can also be derived that give the maximum efficiency and

resolution that are obtainable. If we rearrange Equation (7) so as to

calculate the maximum column length that corresponds to a given pressure

maximum and linear velocity, we obtain:

LmaxðcmÞ ¼
DPmaxð psiÞdpðmmÞ2

145041uðcm= secÞhðcPÞ
ð14Þ

If we then plug this into Equation (10) we get:

Nmax ¼
0:689DPmaxð psiÞdpðmmÞ2

1uðcm= secÞhðcPÞHðmmÞ
ð15Þ

And, plugging into Equation (11) we get:

Rmax ¼
0:0431DPmaxð psiÞdpðmmÞ2

1uðcm= secÞhðcPÞHðmmÞ

� �1=2
k2

1þ k2

� �
a� 1

a

� �
ð16Þ

Speed of Analysis

The simplest way to develop expressions for the speed of analysis is to begin

with the basic relationship that

tr ¼ Lð1þ kÞ=u
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If we apply this relationship to a peak (real or hypothetical) that elutes at the

end of the run, whose capacity factor we will call k0, we can write the

following:

Analysis time ¼ Lð1þ k0Þ=u ð17Þ

We can divide Equation (10) by Equation (17) to obtain an equation for plates

per unit time. This equation was first presented in the early 1980’s.[17,18]

N=time ¼ u=Hð1þ k0Þ ð18Þ

Similarly, we can divide Equation (11) by Equation (17) to obtain a relation-

ship for resolution per unit time (recall that k2 is the capacity factor corre-

sponding to the second peak in a given peak pair and k0 is as defined

above). To the author’s knowledge, this relationship has not been presented

before, though it is arguably one of the most important attributes to the practi-

cing chromatographer.

R=time ¼
u

4ðLHÞ1=2ð1þ k0Þ

� �
k2

1þ k2

� �
a� 1

a

� �
ð19Þ

If we drop the constant terms from Equations (17), (18), and (19), and substi-

tute dp in place of H, we can write the following proportional relationships:

Analysis time ¼ L=u ð20Þ

N=time a u=dp ð21Þ

R=time a
u

ðLdpÞ
1=2

ð22Þ

Notice that Equation (19) suggests that, in order to obtain the maximum

resolution per unit time, we want a relatively high value of k2, and a low value

of k0. Clearly, it is not possible to accomplish both of these simultaneously.

The implication is that the optimal speeds will be obtained with capacity

factors in the intermediate range (perhaps values around 5). Furthermore,

this suggests that increasing or decreasing the capacity factors will

generally not be a particularly effective way to change the speed of a separ-

ation. Reducing the particle diameter is a beneficial approach, as it will

increase the speed of analysis and total resolution simultaneously. This

approach should be evaluated first, especially if the original method utilizes

large diameter particles. Increasing the linear velocity will carry a tradeoff

to the extent that it moves us away from the optimal part of the van

Deemter equation (i.e., will cause H to increase in relationships (18) and

(19)). However, for small diameter particles, this tradeoff is not significant,

and increasing the linear velocity is, in fact, a very effective option for increas-

ing speed in these cases. Here again, the pressure tolerance of the system will
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limit our ability to effect these changes. Reducing column length will increase

the resolution per unit time, while reducing the pressure. However, there will

be a tradeoff in terms of the absolute efficiency and resolution.

In cases where we have just the necessary degree of resolution but want to

increase the speed of analysis, the simplest approach is to reduce both the

column length and the particle diameter by the same factor (x). In this case,

the efficiency and resolution will remain constant (see relationships (12)

and (13)) as has been noted by others.[3,9] Assuming we also increase the

flow rate so as to stay in the optimal linear velocity range (as per relationship

(5)), the resolution per unit time will increase by x2. However, the pressure

will also increase by x2, thereby limiting the extent to which we can make

these modifications.

Sensitivity

The sensitivity of an analytical method is a function of the signal-to-noise

ratio, where the signal is generally defined as the height of a chromatographic

peak. The following formula gives peak height (h) as a function of the area (A)

and retention time (tr) of a given peak, and the plate height (H) and length (L)

of the column.[4]

h ¼
A L1=2

trð2pHÞ1=2
ð23Þ

We can substitute L(1þ k)/u in place of tr, which results in:

h ¼
A u

ð1þ kÞð2pL HÞ1=2
ð24Þ

Here again, we can replace H with dp, as per relationship (3), and drop the

constant terms. For a concentration-sensitive detector, the product of the peak

area and linear velocity will be constant. Thus, when we drop the constant

terms we will also drop Au. In addition, since noise is either constant or

will be accounted for (see Table 2 and its footnote), we can express the

relationship as the signal-to-noise ratio (S/N). Hence, we will replace h

with S/N. Relationship (25) will be the starting point, from which we will

derive the working relationships for concentration-sensitive detectors.

S=N a 1=ðLdpÞ
1=2

ð25Þ

At this point, there are a few additional issues that must be accounted for. First,

we need to address the question of how the peak height would be affected by

changes in the diameter of the column. This, in turn, depends on whether or

not we have a limited volume of sample. There is also the effect of scaling

the detection cell volume.

In the section on extra-column effects, the issue of scaling the injection

volume in relation to the dimensions of the column will be addressed. It
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Table 2. Information for absorbance and fluorescence detectorsa,b

Type of detector

Transmitted energy is

proportional to

Signal-to-noise ratio is

proportional to

Absorbance

Conventional cell c2/b2 c

Light-guiding cell c c1/2 b

Fluorescence

Broadband light source c Roughly proportional to

cell volume, cb. Dependent

on detector design.

Laser light source Not dependent on

flow cell geometry

b

aTable 2 and the qualifying statements below were provided by Anthony Gilby,

Waters Corporation, Milford, MA.[20] The signal-to-noise ratio is also affected by

the radiant energy of the lamp. However, as the present focus is on optimization and

scaling, this will be considered constant.
ba) “Transmitted energy” as used here is the raw detector signal generated by the

photo-detector or by the individual pixels in the case of a PDA. Transmitted

energy depends on flowcell parameters as shown in Table 2. It also depends

on lamp output, photo-detector response and grating efficiency, all of which

vary strongly with wavelength. UV absorbance detectors are generally

designed to maximize transmitted energy in the region of most analytical

interest, 200 to 280 nm.

b) S/N is made up of two components, both of which depend on flow cell

geometry. The signal is the peak height measured in absorbance units (AU),

which depends on pathlength as per Beer’s Law. In the shot-noise limited

case considered here, the peak-to-peak noise on a section of the detector’s

baseline, also measured in AU, depends on the energy transmitted through the

cell. The peak-to-peak noise is reduced as the transmitted energy increases.

c) Although shot-noise limited performance is ideal, other sources of noise can

often be larger than the shot noise, in which case these noise sources dictate

the performance of the detector. The two following situations are commonly

encountered:

Depending on the design of the detector and the application, noise from the

detector electronics may be larger than the inherent shot noise. In this case,

changes in c or b which reduce transmitted energy will result in a larger

reduction in S/N than indicated in the Table above. This commonly occurs

when transmitted energy is already low, for example through choice of wave-

length or when the mobile phase absorbs.

If the detector’s baseline noise is dominated by noise from the separation

system fluidics (pump pulsations, imperfect gradient formation, reagent

addition), changes to cell geometry which affect the transmitted energy may,

surprisingly, have little or no effect on the observed baseline noise. An

unstable light source can have a similar effect. When present, this type of

noise sets a lower limit to the peak-to-peak absorbance noise. This behavior

is quite common when transmitted energy is high (see note 1 above).

(continued)
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will be shown that, when the volume of sample is not limited, the injection

volume should be scaled in relation to dc
2 (Ldp)1/2 (relationship (33)). When

the injection volume is scaled in proportion to the square of the column

diameter, the mass of analyte placed on column will change by the same

factor as the volume of mobile phase in which it is being diluted.

Therefore, the concentration of analyte and, hence, the peak height from a

concentration-sensitive detector will not change. However, when we scale

the injection volume in proportion to (Ldp)1/2, this will increase or decrease

the mass of analyte placed on column without any accompanying change in

dilution. To account for this, we need to add an (Ldp)1/2 term to the

numerator of relationship (25). When dealing with a spectroscopic detector,

we must also consider the issue of scaling the detection cell volume. This

will also be addressed subsequently (see relationship (35)). However, the

effect of this on the signal-to-noise ratio depends on how the pathlength (b)

and cross section (c) of the detection cell will be modified, as well as on the

type of detector being used. The right-most column of Table 2 provides mul-

tipliers that show how the signal-to-noise ratio depends specifically on the

dimensions of the detection cell for various types of spectroscopic detection

systems. Thus, we add an M term to the equation to represent the appropriate

multiplier. After simplification, the result is the following:

S=N a M ð26Þ

The values in the table are based on the assumption that the signal-to-

noise ratio is shot-noise limited, which is generally the case for small chroma-

tographic peaks in a well designed and maintained detector and fluidic system.

The relationship between the signal-to noise ratio and the dimensions of the

detection cell is a very complex topic (which is well beyond the scope of

this paper). The values in Table 2 are offered as a first approximation that

applies in idealized cases.

Notes to Table 2 (Continued)

d) The entry for S/N for a conventional absorbance detector in Table 2 will seem at

odds with intuition: that reducing the pathlength leads to a reduction in S/N as

well as a reduction in peak height; and vice versa. The S/N does change with

pathlength when proportional noise is significant (see note c), or when a change

in pathlength does not result in a change in transmitted energy to the degree

expressed by the c2/b2 entry in Table 2. This can happen when the detector’s

optical design is optimized for one particular pathlength only.

e) In the case of Laser Induced Fluorescence, the noise level will typically be set by

the stability of the laser source.

f) Detector and flow cell design varies from one manufacturer to another, and these

rules should only be used as a rough guide to predict the effect of changing flow

cell parameters in a particular detector. A more detailed discussion is beyond the

scope of this paper. The reader is referred to Reference [20].
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If we were dealing with the same detector, but in a case where the

injection volume will not be scaled (most likely because there is only a

small limited volume of sample available), we would have to account for

the fact that the concentrations of the analytes would change when the

diameter of the column is changed. This is because the amount of mass

placed on column is not changing, but the volume in which we are diluting

it changes in proportion to the square of the column diameter. To account

for this, we would need to add a dc
2 term to the denominator of relationship

(25). The issue on the detection end is the same as that discussed above;

hence, the multiplier (M) is again added. The resulting relationship is:

S=N a M=d2
cðLdpÞ

1=2
ð27Þ

In cases where the detection cell will not be modified, or when dealing

with a concentration-sensitive detector that does not utilize a detection cell

(for example a conductivity detector), the above discussion is equally

relevant, with the exception of the issues regarding the detection cell.

Hence, in these cases, we would use relationships (26) and (27) without the

multiplier (M).

Mass-sensitive detectors respond to the mass flux of analyte passing

through the detector per unit time. Hence, the chromatographic peak area

will be constant and the peak height will increase or decrease in direct pro-

portion to the linear velocity of the mobile phase as it enters the

detector.[21,22] Therefore, when we drop the constant terms from Equation

(24), we will drop A but not u and, hence, the starting point for mass-

sensitive detectors will be:

S=N a u=ðLdpÞ
1=2

ð28Þ

In cases where the volume of sample is not limited, we would scale the

injection volume in proportion to dc
2 (Ldp)1/2 as per relationship (33). So,

the mass placed on-column and, therefore, the peak height from a mass-

sensitive detector would also change in proportion to this quantity. In order

to account for this, we would add dc
2 (Ldp)1/2 to the numerator of relationship

(28). Simplifying, we obtain the following:

S=N a u d2
c ð29Þ

If working with a mass-sensitive detector in cases where the injection

volume will not be adjusted (again, most likely because there is only a

small limited volume of sample available), the mass placed on-column

would be constant. For this case relationship (28) would be the appropriate

expression.

It should be noted that the conclusions and relationships discussed here

apply regardless of whether we are using peak height or peak area quanti-

tation. In either case, narrower peaks will give better signal-to-noise ratios

and, hence, improved sensitivity.
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Solvent Consumption and Waste Generation

The amount of solvent consumed or waste generated is simply given by the

product of the analysis time and the flow rate. A more rigorous way to

express this (which may be more useful for optimization purposes) is by the

product of Equation (17), and the flow rate expressed as u dc
2 p 1/4 (see

Equation (4); the difference is that, here, we are dividing by four instead of

multiplying by 0.15. The reason for this is that we have eliminated the

factor that accomplishes the unit conversions, as this is not useful in this

context). When we perform the multiplication, we obtain the following

relationship:

Solvent Consumed=Waste Generated ¼ p 1ð1þ k0Þ d2
c L=4 ð30Þ

If the constant terms are dropped, we obtain the following relationship:

Solvent Consumed=Waste Generated a d2
c L ð31Þ

Therefore, we can reduce solvent consumption and waste by reducing the

diameter and/or the length of the column. Although reductions in the

column diameter will have a more substantial effect, it will be seen that

several of the extra-column effects are more sensitive to reductions in

column diameter than to reductions in column length. Therefore, some com-

bination of the two may be preferrable.

Scaling to Minimize Extra-Column Effects

Once decisions are made about how the method will be optimized, it is

necessary to consider what scaling may be necessary in order to minimize

band broadening due to extra-column effects. In what follows, formulas are

discussed that dictate how various attributes should be scaled in response to

changes in the length or diameter of the column, the diameter of the stationary

phase particles, or the linear velocity of the mobile phase. The basis for this

discussion will be a paper published in 1975 by Martin, Eon, and Guiochon,

which presented equations for a variety of extra-column effects.[5] However,

these issues have also been addressed by DiCesare, Dong, and Atwood,[18]

Sternberg,[23] Hartwick and Dezaro,[24] Meyer,[25] Chervet, Ursem, and

Salzmann,[26] and various others that will be mentioned throughout this

section.

The issues discussed in this section only need to be considered when

scaling down, i.e., reducing the dimensions of the column, as that is

when there is the potential for the extra-column effects to worsen the

separation.
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Injection Volume

The contribution of the injection process to the observed width of chromato-

graphic peaks depends on both the quality and the volume of the injection. A

“perfect” injection is defined as when the injected volume is delivered to the

mobile phase stream as a narrow plug, and does not mix with the mobile

phase. Martin, Eon, and Guiochon,[5] building on the work of Karger,

Martin, and Guichon,[27] derived a formula which determines the maximum

volume that can be injected (Vi) for a given degree of band broadening, rep-

resented by u. Specifically, u2 is the fraction of peak broadening that is

observed. Other parameters in Equation (32) are the inner diameter (dc),

length (L), and plate height (H) of the column; the capacity factor of a

given analyte (k); a parameter (K) which is a measure of the quality of the

injection; and the total porosity of the column (1) (defined previously). The

K factor is equal to
ffiffiffiffiffi
12
p

for a perfect injection, but real world values are

generally in the range of 1 to 3.[18,27,28] The equation presented below is

modified from Ref. [5] in that L/H was substituted for N in order to make

the dependence on column length explicit.

Vi ¼ uKp1ð1þ kÞ d2
c ðLHÞ1=2=4 ð32Þ

If we plug relationship (3) into Equation (32), and drop all unnecessary

terms, we obtain the following relationship which shows how the linear

velocity should be scaled in relation to the dimensions of the chromatographic

column:

Vi a d2
cðLdpÞ

1=2
ð33Þ

Given a certain fraction of peak broadening that is determined to be

acceptable (u2), Equation (32) would tell us what the maximum injection

volume would be. This equation also suggests that, if we change the dimen-

sions of the column while keeping the injection volume constant, the degree

of band broadening due to the injection process (u2) would change. If we

were to actually calculate a result for Vi, we would need to know the values

of all the parameters in Equation (32), including the capacity factor, which

would be different for each analyte. However, for the purpose of scaling, it

is generally not necessary to do this calculation. We are only interested in

the conclusion given by relationship (33) that, to maintain the band broaden-

ing due to the injection process constant, the injection volume would need to

be scaled in proportion to the square of the column diameter, the square root of

the column length, and the square root of particle diameter.

Relationship (3) will be used in several derivations in the rest of this

section. It should be recalled that this relationship is a good approximation

only when we are operating near the minimum plate height. It follows that,

in cases where we deviate significantly from this region, the relationship

between injection volume and particle diameter that is indicated by
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relationship (33) would become less exact, the extent of which would depend

on how far removed we are. However, the relationship to column diameter and

column length would still be accurate. As mentioned previously, the analyst

may choose not to use the simplification provided by relationship (3) in

cases like this and simply leave the equations in terms of H; and then use a

kinetic plot, such as Figure 1, to obtain a good approximation of how H

would change in a given situation.

Finally, it should be mentioned that additional band broadening can occur

if the sample is dissolved in a solvent that is significantly stronger (chromato-

graphically) than the mobile phase.[29,30] The reason for this is that the

effective capacity factor may be reduced during the time that the analytes

are being transferred onto the column.

Detector Cell Volume

Equation (34) gives the detector cell volume (Vd) as a function of several par-

ameters, as previously defined. This equation was derived by Martin et al.[5]

building on the work of Sternberg.[23]

Vd ¼ up 1ð1þ kÞ d2
cðLHÞ1=2=4 ð34Þ

Combining Equation (34) with relationship (3), and dropping unnecessary

terms, we obtain the following scaling relationship:

Vd a d2
cðLdpÞ

1=2
ð35Þ

The reason for the requirement on the volume of the detector cell is that if

the volume of the cell is too large in relation to the volume of the peaks, the

mixing which occurs within the cell can cause a significant deterioration of the

chromatography. The critical factor is the fraction of the peak which can exist

in the detector cell at any point in time. Logically, it is the smaller peaks of

interest that are most susceptible to band broadening by this process.

System Dead Volume

System dead volume refers to voids in the fittings (or even the column itself).

This issue has been discussed in the literature, both from a practical and theor-

etical standpoint.[23,31 – 36] However, these references do not provide a formula

describing how dead volume should be scaled relative to the dimensions of the

chromatographic column. This is most likely due to the fact that instrument

dead volume is not something that can be easily controlled. However, it is

for exactly this reason that dead volume can have a very significant effect

in chromatography. Therefore, it would be useful to have some quantitative

idea what the effect of dead volume would be when the dimensions of the

column are reduced.
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Dead volume contributes to band broadening by exactly the same mechanism

described above for the detector cell. And, for dead volume regions that are down-

stream of the column, the relationship between the allowable dead volume and the

dimensions of the column is the same as that described for the detector cell and,

hence, relationship (35) can also be used in these cases. The derivation of

Equation (34) (by Martin et al., Ref. [5]) was based on the assumption that the

detector cell is a perfect mixer (i.e., the concentration within the cell becomes

immediately uniform). This is generally a reasonable assumption for a detector

cell; however, when dealing with dead volume, the assumption is somewhat

shaky. Relationship (35) should, therefore, be thought of only as an approximation

when applied to system dead volume downstream of the column.

With respect to dead volume regions upstream of the column, relation-

ships (34) and (35) are not relevant, as none of these parameters have any

effect on the widths of the peaks upstream of the column. The dead volume

upstream of the column is actually more important than dead volume on the

back end, simply because the volumes of the peaks are smallest at the head

of the column. However, as there is no relationship between band broadening

due to upstream dead volume and the dimensions of the column, it is not

relevant in a discussion of scaling and will not be discussed further.

Detector Time Constant

The detector time constant is defined as the time a detector takes to respond to

63.2% of a sudden change of signal.[21] Simply put, the higher the time

constant the slower the response time and, therefore, less readings are

obtained across a peak. An insufficient number of readings across a peak

may adversely affect efficiency, resolution, and sensitivity. With modern

instrumentation, the time constant may be controlled within certain limits.

Martin et al.,[5] building on of the work of Schmauch[21] and McWilliam

and Bolton,[37] offered a definition for the detector time constant (t) in

terms of retention time and the plate height of the column.

t ¼ u ð1þ kÞðLHÞ1=2=u ð36Þ

If we are operating at (or near) the minimum plate height at all times,

relationship (3) will be valid, and we may substitute dp in place of

H. Dropping the unnecessary terms, we obtain the following expression:

t a ðLdpÞ
1=2=u ð37Þ

It has been shown that the number of points required to sufficiently define a

peak varies from 9 (for symmetrical guassian peaks) to 32 (for peaks that are sig-

nificantly non-guassian).[38] However, it has been suggested that, in most cases,

15 points will be sufficient.[4] Therefore, scaling the time constant as described

above may not be necessary in cases where the change in column dimensions

leaves us with more than 15 points across the smallest peak of interest.
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Injection Time

Martin et al. also derived an equation for the maximum injection time (tinj).
[5]

The equation presented below is a modification of this equation; L/H has been

substituted for N and L(1þ k)/u has been substituted for tr, in order to make

the relationship to column length explicit.

tinj ¼ uKð1þ kÞðLHÞ1=2=u ð38Þ

It may be noted that this equation is identical to the equation for the time

constant, except for the addition of a K term, which is related to the shape

of the injection band at the column inlet. Hence, when the constant terms

are dropped, we find that the injection time depends on the same variables

as the time constant.

tinj a ðLdpÞ
1=2=u ð39Þ

Length and Diameter of Connecting Tubing

Band broadening in the connecting tubing occurs due to longitudinal diffusion

and mobile phase mass transfer effects. Formulas have been derived to

quantify this effect based on the Golay equation which describes the flow of

a fluid in open tubes.[5] Due to the high linear velocities of the mobile

phase in the tubes, as well as the fact that the tubes have a rough surface

and are generally not perfectly straight, the flow through the tubes is non-

laminar. As a result, the band spreading is less than that which is predicted

by the Golay equation.[40,41] Having studied the problem extensively, Neue

has suggested the following alternative approach: where s2 is the variance

of the band broadening due to the tubing, h is the plate height corresponding

to the band broadening in the tubing, and l and d are the length and diameter of

the connecting tubing, respectively.[3]

s 2 ¼ h lp2d4=16 ð40Þ

We now need to express this in terms of the column dimensions, the column

plate height, and the observed fraction of peak broadening. Following the

approach of Martin et al., we can express the variance of the connecting

tubing as follows:[5]

s 2 ¼ u 2V2
r H=L ð41Þ

Given that Vr ¼ p 1 u dc
2 tr/4 and tr ¼ L (1þ k)/u, we can re-write this as:

s 2 ¼ u 2p212ð1þ kÞ2d4
c L H=16 ð42Þ

Finally, by setting the right half of Equation (40) equal to the right half of

Equation (42), and simplifying, we obtain:

l d4 ¼ u 212ð1þ kÞ2d4
c L H=h ð43Þ
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The value of h is generally between 2 and 10;[42,43] it is reasonable to approxi-

mate its value as being equal to 6. For the purpose of scaling, however, all that

is important is the following proportional relationship, where we have again

substituted dp in place of H:

l d4 a d4
c L dp ð44Þ

Applying the Relationships to Monolithic Columns

Monolithic columns utilize a continuous porous solid as the stationary phase,

as an alternative to the conventional packed bed. These columns are

becoming increasingly popular; therefore, it will be useful to address the

question of whether the relationships presented in this article apply to mono-

lithic columns. Parameters such as column length, column diameter, and

capacity factor are equally relevant when dealing with monolithic

columns. Hence, insofar as these variables are concerned, the relationships

presented in this article are entirely appropriate for monolithic columns.

What is not obvious is the question of which parameter would replace the

particle diameter, as monoliths are not composed of discrete particles. For

pressure drop, and related equations, one could use the equivalent particle

diameter concept that has been suggested by some.[44 – 46] This means that

a particle diameter would be determined such that the permeability of a

monolithic column is equivalent to that of a conventional packed bed

column with the stated particle diameter. With respect to dispersion issues,

the equivalent particle diameter approach is not as useful, as it would not

allow comparison of monolithic columns and conventional columns. The

simplest approach for dispersion related issues would be to leave the

equations in terms of plate height and utilize kinetic calculations or plots

(such as Figure 1) to determine what the plate height (H) values would be

in a given situation.

PART II: GRADIENT SCALING: KEEPING RELATIVE
RETENTION TIMES CONSTANT WITH GRADIENT

METHODS

Linear Gradients

With gradient separations, changes in the gradient time, flow rate, or dimen-

sions of the column can affect the relative retention times of the peaks. In

some cases, it will be desirable to keep the relative retention times constant

when changing these variables. This is important once a gradient separation

has been developed to the point where the analyst wants to maintain the

relative retention times of the peaks constant while any additional optimization
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steps are carried out. This will also be useful when optimizing a method where

peak identification based on relative retention times has already been estab-

lished. With simple linear gradients, this can be accomplished by keeping

the ratio of the gradient volume to column volume constant. We may write

this as follows: where tG is the gradient time, i.e., the time interval

over which the mobile phase composition is ramped. This rule has been

observed empirically[47 – 49] and can be derived using linear solvent strength

theory.[49]

ðtG FÞ=ðd2
c LÞ ð45Þ

The parameters can be adjusted in any way and, as long as the ratio

remains constant, the relative retention times of the peaks will remain

constant. However, assuming the linear velocity is in the optimal range,

it may be preferrable to keep the linear velocity constant. In these cases,

the recommended approach is to scale the flow rate in proportion to the

square of the column diameter, and scale the gradient time in direct pro-

portion to column length. The initial and final mobile phase compositions

should always be kept constant.

It should be noted that, when dealing with separations of large molecules,

it may be less important to scale column length as per relationship (45). The

standard chromatographic process involves the analytes continuously parti-

tioning back and forth between the stationary and mobile phases. However,

with larger molecules, the situation approaches what is sometimes referred

to as on/off behavior. This is where the analytes remain associated with

the stationary phase until a certain mobile phase strength is reached, at

which point they are rapidly desorbed and eluted.[50] It has been observed

that, for separations of large molecules, column length often has less signifi-

cance than that which is generally observed with small molecules: which is

consistent with the on/off mechanism.[51 – 60] The phenomenon is fundamen-

tally related to the number of binding sites between the analyte and the

stationary phase and, therefore, is not strictly dependent on molecular

weight. However, as a rough guide, it can be stated that conventional parti-

tioning behavior will generally be observed for analytes with molecular

weights below 2000, full on/off behavior will generally be observed for

analytes with molecular weights above 10,000, and intermediate behavior

will often be observed between 2000 and 10,000.[61] Clearly, this does not

apply to size exclusion, and some exceptions may be observed with ion

exchange separations in cases where large molecules interact with the station-

ary phase via a small number of binding sites. The significance of this with

respect to scaling is that, in cases where on/off behavior is dominant, the

analyst may observe that changing the length of the column will have a

minimal affect on relative retention times. This is because the “effective

column length” is not changing.
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Instrument Dwell Volume and Isocratic Segments at the Beginning

of the Run

Dwell volume is defined as the volume within the HPLC system from the point

where the solvents are mixed to the head of the column. The dwell time is the

time that it takes for the mobile phase to move through this region. The instru-

ment dwell volume can be determined by removing the column and running a

gradient from 100% methanol (A solvent) to methanol with 0.1% acetone (B

solvent) over 20 minutes. If this is done at a wavelength of 265 nm, the chro-

matogram will essentially be a visual picture of the gradient. The time when

the absorbance is halfway between the minimum and the maximum is then

determined and, from this time, 10 minutes (half the gradient time) is sub-

tracted. The result will be the dwell time. Dwell volume is then given by

the product of dwell time and the flow rate (VD ¼ tD � F).[4] When dealing

with gradient methods, the dwell volume of the system will affect the

spacing of the chromatographic peaks. Therefore, adjustments will be

needed if the relative retention times are to be kept constant.

First, it is important to understand the mechanism by which this occurs.

Consider that, as the strength of the mobile phase increases during the course

of a gradient run, the dwell volume will cause a delay between when each incre-

mental change is effected, and when this change reaches the head of the column.

As a result, the retention times of the peaks will be delayed. This is identical to

the effect of a programmed isocratic hold segment at the beginning of the run,

which would cause exactly the same type of gradient delay.

The key is that this phenomenon does not affect all peaks equally. Peaks

which elute at the very beginning of the gradient are less delayed, because

these components generally migrate through the column under the initial con-

ditions. Peaks which elute towards the middle or end of the gradient will

generally realize the full effect of the delay. Hence, in this way the relative

spacing of the peaks is affected. The spacing between adjacent peaks would

be most noticeable between these two regions, i.e., between the early to the

middle part of the gradient ramp.

The total delay is due to the sum of the dwell time (tD) and any pro-

grammed isocratic hold segment at the beginning of the run (tiso, beginning).

Therefore, it is the quantity (tDþ tiso, beginning) that is important. However, it

will be more convenient to express the quantity as (VD/Fþ tiso, beginning) in

terms of the two things one would potentially adjust: the dwell volume and

the initial isocratic hold time. It will be necessary to scale this quantity with

respect to changes in the flow rate, as well as changes in the length of the

column. These issues are discussed in the following two paragraphs,

respectively.

Assume that we reduce the flow rate by a certain factor by application of

relationship (45). The result is that the dwell time will increase by this same

factor, simply because it takes the mobile phase this much longer to travel

through the system dwell volume. If we want to keep the delay constant so
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as to keep the relative retention times constant, we would need to reduce the

dwell volume to bring the quantity (VD/Fþ tiso, beginning) back to its original

value. Alternatively (and much more easily), we could reduce the initial

isocratic hold time to accomplish the same goal. In other words, the above

quantity must be kept constant.

VD=Fþ tiso;beginning ¼ constant ð46Þ

If we scale as per relationship (45), resolution will change in proportion to the

square root of column length, and the distance between the peaks will change

in direct proportion to column length, just as for isocratic methods (as will be

demonstrated in Part III). From the discussion above, we know that changes in

the gradient delay, caused by the dwell volume and initial isocratic hold, can

also cause certain peaks to become more separated, or to move closer

together. Since both of these factors will affect the spacing of the peaks, it

follows that they must be changed by the same amount if all relative retention

times are to be maintained constant. Hence, when column length is changed,

the quantity (VD/Fþ tiso, beginning) must be changed by the same factor.

This can be captured by adding a column length term to the right side of

Equation (46), resulting in:

VD=Fþ tiso;beginning ¼ L� constant ð47Þ

This tells us how the dwell volume and/or initial isocratic hold time need to be

adjusted in relation to changes in F or L, so as to keep relative retention times

constant. Simple algebra allows us to state this in a more convenient way.

Specifically, we can properly scale with respect to dwell volume and initial

isocratic hold segments by maintaining the following ratio constant:

ðVD þ tiso;beginning � FÞ=F L ð48Þ

If the flow rate is scaled in direct proportion to the square of the column

diameter (which is often the case) we can re-write this expression as follows:

ðVD þ tiso;beginning � FÞ=d2
c L ð49Þ

Relationship (49) is equivalent to the conclusion presented by

others.[49,62,63] However, relationship (48) is more general, as it does not

make any assumptions about how flow rate will be scaled.

In cases where the adjustment cannot be made by changing the initial

isocratic hold time (because it would have to be reduced by an amount

greater than its original value), there is an alternative that can be evaluated

before attempting to actually modify the dwell volume of the HPLC. Some

modern systems allow the analyst to delay the sample injection relative to

the start of the gradient.[4,63,64] This approach can be used when the flow

rate and/or the length of the column will be reduced. The “effective dwell

volume” will be reduced by the product of the delay time and the flow rate

(the new flow rate, if the flow rate is changed).
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Isocratic Segments in the Middle of a Complex Gradient Method

Isocratic segments in the middle of a complex gradient (such as the segment

labeled ‘hold 2’ in Figure 2) will delay the subsequent gradient ramp (‘ramp 2’

in Figure 2), in exactly the same way as the dwell volume and initial isocratic

hold segment delay the first gradient ramp. It is fairly easy to extend the

treatment above to deal with this issue.

In the previous discussion, it was only the instrument dwell volume term

that had a dependence on flow rate. This is obviously not relevant here.

However, the connection between isocratic segments and column length

does apply. Hence, isocratic segments in the middle of a complex gradient

(tiso, middle) should be scaled in direct proportion to any changes in the

length of the column. In other words, the following ratio should be maintained

constant. It may be noted that this is the same type of expression that would

result if the dwell volume term was dropped from relationship (48).

tiso;middle=L ð50Þ

Only isocratic segments that are followed by a gradient ramp will affect

relative retention times by the mechanism described. Therefore, adjusting the

isocratic segment at the end of the method is not required in order to maintain

relative retention times constant.

Sample Calculation

An example may help to clarify the issues discussed in the last few sections.

Consider a gradient which starts with a 4 minute hold at a composition of

Figure 2. Sample gradient.
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80/20 A/B, then ramps to 55/45 A/B between 4 minutes and 10 minutes,

followed by a second isocratic hold from 10 to 15 minutes, then another

ramp to 20/80 A/B between 15 and 20 minutes, with a final isocratic hold

from 20 to 24 minutes. This gradient is depicted in Figure 2. Suppose that

the flow rate was 1 mL/min, and the column has a diameter of 4.6 mm and

a length of 10 cm. Finally, suppose that the HPLC used in this experiment

has a dwell volume of 1 mL. This gradient is more complex than that which

one would normally want (or need) to use. This was intentional, however,

as it helps to illustrate the procedure.

In this exercise we will consider what adjustments should be made if we

were to reduce the diameter of the column from 4.6 to 3.2 mm, and reduce the

length of the column from 10 cm to 5 cm. It is logical to first evaluate the

linear gradient ramps using relationship (45). This will determine how

much the flow rate will change, which is information we need to apply

relationship (48) to address the dwell volume and initial isocratic hold time.

Ramp 1

If the linear velocity is in the optimal range, and we want to keep it there, the

recommended use of relationship (45) is to scale the flow rate in proportion to

the square of column diameter, and to scale the gradient time in proportion to

column length (in all cases, the initial and final mobile phase concentrations

should be kept constant). The change in the square of the column diameter

can be calculated as:

d2
c original=d

2
c new ¼ 4:62=3:22 ¼ 2:1

The flow rate in the original method was 1 mL/min. Since the square

of the column diameter will be reduced by a factor of 2.1, the new flow rate

will be:

1=2:1 ¼ 0:48 mL=min

The gradient time will be scaled in direct proportion to column length.

Therefore, the gradient time will be reduced by a factor of 2. Since the

gradient time for Ramp 1 in the original method was 6 minutes, the new

gradient time for Ramp 1 will be 3 minutes.

Ramp 2

The scaling of ramp 2 would be accomplished in the same way as for ramp 1.

The change in flow rate has already been established. Thus, all that remains is

to reduce the gradient time for ramp 2 in proportion to the change in column

length. In the original method, Ramp 2 takes place over an interval of 5

minutes, therefore, in the new method Ramp 2 should take place over 2.5

minutes.
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Dwell Volume and Hold 1

The dwell volume must be evaluated together with the initial isocratic hold

segment, using relationship (48). The first step is to determine how much

the product of flow rate and column length will change on going to the new

column. With flow given in mL/min and length given in cm, we can write:

ðFLÞoriginal ¼ 1� 10 ¼ 10

ðFLÞnew ¼ 0:48� 5 ¼ 2:4

Therefore, the quantity (FL) will be reduced by a factor of:

10=2:4 ¼ 4:2

Relationship (48) suggests that the quantity (VDþ tiso, beginning � F) must

change by this same factor. In the original method this quanity is equal to:

ð1þ 4� 1Þ ¼ 5

Therefore, with the revised method, the quantity must equal:

5=4:2 ¼ 1:2

By simple algebra we can determine that this can be accomplished by reducing

tiso, beginning (i.e., Hold 1) from 4 minutes to 0.42 minutes, such that the

quantity becomes:

ð1þ 0:42� 0:48Þ ¼ 1:2

In this way, we have made the necessary adjustment without having to take on

the difficult task of actually changing the dwell volume of the system.

Hold 2

Relationship (50) suggests that the time corresponding to isocratic segments in

the middle of a complex gradient should be scaled in direct proportion to

column length. We are reducing column length by a factor of 2, therefore,

we must reduce tiso, middle from 5 to 2.5 minutes.

Hold 3

No scaling is required for the hold segment at the end of the run, because hold

segments that are not followed by a gradient ramp do not affect the relative

retention times of the peaks, and most peaks will elute prior to this point

anyway. For the purpose of this exercise, we will leave Hold 3 unchanged.

The total run time for the new method would be 12.42 minutes. A plot of

this revised method is shown in Figure 3. The same scale as Figure 2 is used to

allow for easy comparison.

M. A. Stone628

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
6
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



Gradient Scaling During Method Transfer

Relationship (48) can also be used in the context of a method transfer, where the

column dimensions would be constant, but significant differences may exist in

the instrument dwell volumes. By use of this relationship, it is possible to cancel

the effect of any difference in the dwell volumes of the two HPLC systems. This

may be important in cases where a method shows unacceptable chromatography

when run on a different HPLC system, or when a method which identifies all

components on the basis of their relative retention times (such as a related sub-

stances assay) must be run on a different system. Here again, this correction can

often be made simply by modifying the isocratic hold time at the beginning of

the run. The goal is that the quantity (VDþ tiso, beginning � F) is the same with

the new HPLC system as on the previous system.

The alternative of delaying the injection is also possible here if we are

transferring to a system with a larger dwell volume. The injection should be

delayed by an amount equal to the difference in the dwell volumes of the

two systems divided by the flow rate [(VD, new – VD, original)/F]; but, it may

be easier to simply run a few experiments and determine what works.

PART III: APPLYING THE BASIC RELATIONSHIPS TO

GRADIENT METHODS

Interdependency of Variables in a Gradient Method

At this point it will be useful to revisit the conclusions of Part I with respect to

their applicability to gradient methods. Fundamentally, all of the relationships

Figure 3. Scaled gradient method.
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discussed in Part I are equally valid for gradient methods. The complication is

that, with gradient methods, the mobile phase composition and, hence, the

capacity factor, is changing during the course of the run. Linear solvent

strength theory discusses gradient separations in terms of the average

capacity factor (k�), which may be defined as follows, as derived from

Equations (2.11) and (2.13) in Ref. [64]. If the initial mobile phase

composition is kept constant (which will generally be the case during optimiz-

ation and scaling) this relationship applies to all peaks, including early

eluters.[64]

k� ¼ 3:48 tG F=DfSp1 d2
c L ð51Þ

The gradient version of the plate height (H�) would have the same form as

Equation (1), except that we would replace k with k� and an average value

would have to be used for the mobile phase diffusivity (DM). Similarly, the

resolution of a gradient method can be written in a way that is analogous to

the isocratic expression, except for the addition of the gradient compression

factor (G), as follows:

R� ¼

ffiffiffi
L
p

4G
ffiffiffiffiffiffi
H�
p

� �
k�2

1þ k�2

� �
a� � 1

a�

� �
ð52Þ

The gradient compression factor (G) addresses the fact that the mobile

phase composition is increasing during a gradient analysis and, therefore,

the trailing part of a peak experiences a slightly stronger mobile phase, at

any point in time, than the leading part of the peak. As a result, the analytes

in the trailing portion of the peak will migrate somewhat faster than the

analytes in the leading part of the peak. It has been predicted that this phenom-

enon would cause some compression (or sharpening) of the peaks.[65] This

topic has been somewhat controversial. Some have suggested that the

gradient compression which is actually observed in practice is small or non-

existent (or G �1).[57,66 – 71] Recently, a study was conducted which defini-

tively proved that gradient compression does occur (or G , 1).[72] The

extent to which gradient compression occurs is a function of the steepness

of the gradient. Therefore, when adjustments are made such that k�

decreases (i.e., we go to a steeper gradient), there will be a “hidden benefit”

as there will be an increase in gradient compression (or a reduction in G)

which results in higher resolution; and the opposite will be true when k�

increases. A further discussion of gradient compression is beyond the scope

of this paper. However, to give some idea of the magnitude of the effect,

the most recent (and well controlled) study showed that, with linear

gradients, improvements in resolution were generally between 9 and

32%.[72] Given that gradient compression causes the chromatographic peaks

to be narrower than what would be predicted from the van Deemter

equation, the gradient compression factor can be thought of as a correction
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factor for the plate height, such that, in the gradient version of any optimiz-

ation or scaling relationship, the H term should be multiplied by G2.

By looking at Equations (51) and (52), it is clear that there is a more

complex interdependency of variables in gradient HPLC, as compared to

isocratic separations. With gradient methods, the capacity factor is a

function of the gradient time, the flow rate, and the dimensions of the

column. As a result, the effect of certain changes will not be as predictable

with gradient methods. Consider, for example, that if we decrease column

length, Equation (52) suggests that this will have a negative effect on resol-

ution. However, Equation (51) suggests that we will simultaneously increase

the gradient capacity factors, which will have a positive effect on resolution.

This, in turn, will cause a decrease in gradient compression (or an increase

in G) which would have a negative effect. Hence, the net effect will be a

result of the competition between these processes.

Suppose, now, that we increase the linear velocity such that we are

beyond the optimal region of the van Deemter curve. The plate height will

increase, which will have a negative effect on resolution. However, k� will

also increase, which will have a positive effect on resolution. And this, in

turn, will cause gradient compression to decrease (increase in G), which has

a negative effect. Here again, the net effect will be determined by these

competing processes. This demonstrates why the optimal linear velocity of

a gradient method will generally be somewhat higher than that which is

predicted by the van Deemter equation, because the optimal linear velocity

of a gradient method is dependent on this “capacity factor effect” in

addition to the van Deemter effects that apply to all chromatographic

methods. This has been demonstrated in several publications.[19,62,71,73,74]

The “capacity factor effect” is more pronounced at lower values of tG,

simply because these generally correspond to lower values of k� where the

dependence of resolution on the capacity factor is stronger. Hence, the

optimal linear velocity will increase as the gradient time is decreased.

Although the focus of this article is on the mathematical tools needed

to optimize and scale chromatographic separations, the complex inter-

dependency of the variables makes it difficult to use these tools when first

developing a gradient method from scratch. Computer programs are now

available that can assist the analyst in this process. Alternatively, a

step-wise experimental approach such as the following can be used (this

is a combination of conventional approaches and the author’s own

experience).

1. For gradient times that are predicted to be between 20 and 90 minutes,

start with a 15 cm 3 mm column, or a 10 cm 1.7 mm column. If shorter

gradient times are anticipated, start with a shorter column, and vice versa.

2. Run a gradient from 5% to 95% organic over a period of 30 minutes.

Adjust the initial and final mobile phase composition to eliminate any

wasted time at the beginning or end of the chromatogram.
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3. Evaluate the gradient time. Increase the gradient time to improve resol-

ution, or decrease gradient time to eliminate wasted space in the chroma-

togram, and hence, increase the speed of analysis. If desired, add isocratic

hold segments in the method so as to further optimize the separation.

4. The optimal linear velocity will change as the gradient time changes, due

to the “capacity factor affect” (discussed above). Therefore, it would be

helpful to have an easy way to “ballpark” what the linear velocity

should be for each gradient time that’s evaluated. Although it is

possible to calculate the optimal linear velocity for a given tG (Ref.

[71]) this is cumbersome. The author has found that the following rule

of thumb can offer an easy (though admittedly very approximate) way

to estimate what linear velocity should be used for a given gradient

time.

. Assume that, for gradient times �2 hours, the optimal linear velocity is

equivalent to that predicted by the van Deemter equation. Further,

assume that below 2 hours each reduction of the gradient time by a

factor of 4 requires a doubling of the linear velocity.

Once the gradient time is established, some quick experiments should

then be conducted to find the true optimal linear velocity.

5. Optional: evaluate different column lengths and/or particle diameters, if

necessary, to optimize resolution, or speed, or sensitivity, etc.

The remainder of Part III will focus on optimizing an already existing method

and then performing any requisite scaling. By inspection of relationships (45)

and (51), it is obvious that, when relationship (45) is used to keep the relative

retention times constant, k� will also remain constant. It follows from this, in

turn, that the gradient compression factor and the optimal linear velocity will

also remain constant. Finally, relationship (3), which was used in many of the

derivations in Part I, will be valid (relationship (3) was derived by minimiz-

ation of the van Deemter equation;[2] this process treats the capacity factor

as a constant). In these cases, the situation is simplified and the relationships

between the variables in the optimization and scaling relationships are

analogous to those for isocratic methods. Conversely, the analyst may

decide that they want to change some of the variables independently. In

these cases, it must be realized that the relative retention times of the peaks,

k�, G, and the optimal linear velocity will change, and that relationship (3)

is no longer a safe assumption, making the effect of any manipulations

more difficult to predict. In these cases, it may be best to resort back to the

stepwise approach summarized above.

Effect of Instrument Dwell Volume and Isocratic Segments

In the previous section, it was argued that, when relationship (45) is

followed, the optimization and scaling relationships may be directly
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applied to gradient methods. This discussion centered on the issue of linear

gradient segments. The issues of isocratic segments and dwell volume must

now be addressed. The primary effect of instrument dwell volume or pro-

grammed isocratic segments at the beginning of the run is to increase the

amount of time that the analytes spend in the stationary phase (with early

eluters being an exception). Although there is, theoretically, some longitudi-

nal band broadening that occurs in the stationary phase, it is generally insig-

nificant and can be ignored.[75] Therefore, these factors do not significantly

affect the widths of chromatographic peaks. Isocratic segments in the middle

of a gradient are uncommon (and, hence, not much of a concern). However,

in cases where they exist, the same argument can be made, in that they delay

the subsequent gradient ramp, thereby increasing the time that the more

retained analytes spend in the stationary phase. Finally, an isocratic

segment at the end of the run is generally not significant, as almost all

analytes will be eluted by this point. It follows from this that—to a rough

first approximation—the presence of dwell volume and isocratic hold

segments does not affect the validity of the optimization and scaling

relationships that will be discussed in this section (with early eluting

analytes being an exception). Furthermore, with the exception of the

relationships for resolution and resolution per unit time, it does not matter

whether or not we utilize relationships (48) and (50).

Optimizing the Method

Efficiency and Resolution

The expression for efficiency in gradient methods (N�) has a form analogous

to that for isocratic methods, except that H is replaced with H�, which is then

multiplied by the gradient correction factor squared:

N� ¼ L=H�G2 ð53Þ

Efficiency is not a terribly useful concept with gradient separations because it

does not reflect the effect that various alterations can have on k�. Therefore,

the resolution equation is recommended when optimizing gradient separ-

ations. The gradient version of the resolution equation was presented earlier

(Equation (52)).

As mentioned above, if relationship (45) is applied, k�, G, and the optimal

linear velocity will also remain constant. If the analyst decides to alter certain

parameters independently (for example increasing tG in order to increase k�,

and hence, resolution), the situation becomes more complicated. In these

cases, it may be difficult to use the mathematical tools and it may be pre-

ferrable to utilize the stepwise approach described above. For example,

relationships (12) and (13) will not be valid in these cases, as they
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assume constant k�. In fact, if we reduce the length and particle diameter by

the same factor (with all other parameters held constant), the resolution will

improve in most cases, simply because the reduction of column length

carries less of a penalty in gradient methods. This has been demonstrated

in the literature.[19,62,64]

Lastly, it should be understood that, when the relative retention times of

all peaks are not kept constant (as per the procedures discussed in Part II), this

can affect the spacing between the peaks, which effectively changes resol-

ution. Therefore, when Equation (52) is used, it is important to also use

relationships (48) and (50), as necessary.

Speed of Analysis

To obtain the gradient version of Equations (17), (18), and (19) we would

replace k0 with k0�, k2 with k2
�, H with H�, and a with a�. Then G2 would

be added to the denominator of relationship (18) and G would be added to

the denominator of relationship (19). Again, resolution is a more meaningful

parameter with gradient methods; hence, it is recommended to evaluate speed

in terms of resolution per unit time. As discussed in Part I, making changes that

affect the capacity factors will generally not be the best way to improve res-

olution per unit time. Therefore, the general approach to increase the speed

of a gradient method would be to first reduce tG while increasing the linear

velocity and/or reducing column length, such that k� remains constant.

With small diameter particles, increasing the linear velocity would be prefer-

rable, as this will have less of an effect on the total resolution than reducing the

length of the column. This approach will increase the speed of analysis and,

simultaneously, maintain relative retention times, k�, gradient compression,

and the optimal linear velocity constant. Recall that, when we are evaluating

the resolution per unit time of a gradient method, it is important to also use

relationships (48) and (50) as necessary.

As mentioned in Part I, the simplest approach, in cases where we have just

the necessary degree of resolution, but want to increase the speed of analysis,

is to reduce both column length and particle diameter by the same factor (x). In

this way, the efficiency and resolution will remain constant (see relationships

(12) and (13)). Of course, when utilizing this approach for gradient methods, it

is also necessary to apply relationship (45). Assuming that we increase the

flow rate so as to stay in the optimal linear velocity range (as per relationship

(5)), this approach will increase the resolution per unit time by x2. However,

the pressure will also increase by x2. This approach can be somewhat

confusing with gradient methods; therefore, it is useful to break it down

into steps:

1. Make a decision concerning how much L and dp will be reduced.

2. Make a decision concerning how the flow rate will be adjusted. If we are

in the optimal linear velocity range, and want to stay there, adjust the flow
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rate inversely with the change in dp (as per relationship (5)). However,

with small diameter columns, the best speed will be obtained at linear vel-

ocities above the optimal.

3. Once we know how much the flow rate and length of the column will

change, make the necessary adjustment in gradient time so as to keep

ratio (45) constant.

4. Apply relationships (48) and (50) as necessary.

Sensitivity

In the beginning of the discussion on sensitivity, Equation (24) was derived. To

make this equation valid for gradient methods, we would need to replace H

with H� and k with 0.5 k�, which is the capacity factor of a peak just prior to its

elution from the column. Lastly, we would need to add the gradient compression

factor (G) to the denominator. We use 0.5 k� because, in this context, what is sig-

nificant is the linear velocity with which the peak is moving at the end of the

column. And this, in turn, is a function of the capacity factor that applies at the

end of the column (this issue will be discussed in more detail below). From the

previous discussion, we know that H�, k�, and G will not be affected by column

dimensions, when scaling is done as per relationship (45); therefore, these may

be treated as constants just as was done for isocratic methods. The conclusion

is that all the relationships derived for sensitivity may be applied to gradient

methods as well, when scaling as per relationship (45). Here again, when

we make adjustments such that k� changes, the situation becomes more

complicated.

It is logical that, in most cases, 0.5 k� will be smaller than the capacity factors

of peaks that elute in the middle and end of a typical isocratic method. This is the

reason for the inherently better sensitivity of gradient methods for these peaks.

Solvent Consumption and Waste Generation

The conclusion reached in Part I was that solvent consumption and waste gen-

eration are a function of the length and diameter of the column. This con-

clusion is, in no way, dependent on whether or not the composition of the

mobile phase is changing during the run. Thus, the conclusion may be

extended to gradient methods with no stipulations, except that we would

replace k0 with k0� in Equation (30).

Scaling to Minimize Extra-Column Effects

In order to “convert” to the gradient version of the extra-column effects

equations, we would need to replace H with H�G2 (as was described

above). However, the k terms that appear in these equations will be handled
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in a somewhat different manner. Instead of replacing k with k�, we will replace

it with ko or 0.5 k�, i.e., the capacity factors at the beginning of the column or

the end of the column, respectively. The reason for this is easy to understand.

Chromatographic peaks move at a lower velocity while on the column which

has a stationary phase, than when in the injection valve, connecting tubing, or

detection cell, which do not have a stationary phase. As a result, there is a

focusing effect which occurs as peaks are transferred onto the column, and

a band broadening that occurs as peaks exit the column. The more retained

a peak is (higher k), the lower is the on-column velocity and, hence, these

focusing and band broadening affects are more pronounced. The significance

of the capacity factor terms in the extra-column effects equations is to account

for these phenomena. Therefore, what is important in these equations is the

capacity factor at the head of the column (ko) or the capacity factor at the

end of the column (0.5 k�). Specifically, ko would be the relevant parameter

for the equations for maximum injection volume or speed of injection, as

well as when evaluating the maximum length and diameter of connecting

tubing upstream of the column; whereas, 0.5 k� would be the relevant

parameter in the expressions for detector cell volume, detector time

constant, when evaluating the maximum length and diameter of connecting

tubing downstream of the column. As discussed above, 0.5 k� will also be

appropriate in the sensitivity equations, as this is what determines the band

broadening as the peaks are transferred into the detector.

For example, the gradient version of the detection cell volume equation

would be:

V�d ¼ up 1ð1þ 0:5 k�Þ d2
c ðLH�Þ1=2G=4 ð54Þ

Given that relationship (3) is valid for gradient methods, when we utilize

relationship (45), we can combine relationship (3) and Equation (54). The

result is the same scaling relationship that was generated for isocratic

methods (relationship (35)).

In reality, the focusing effect discussed above would render the effect of

certain attributes largely insignificant. Specifically, the effect of the injection

volume, the speed of injection, and the connecting tubing upstream of the

column (all relationships for which ko would have been the appropriate

parameter) will usually not be critical for gradient methods (with the

exception of very early eluting peaks). In fact, it is generally possible to sig-

nificantly increase the injection volume when the sample is dissolved in a

solvent that is chromatographically weaker than the intial mobile phase.[64,76]

Finally, the presence of dwell volume and isocratic hold segments in the

method do not significantly affect the validity of the scaling relationships. In

fact, they are even less important than they were in the case for the optimiz-

ation relationships. This is because, for the scaling relationships, all that

matters is the capacity factor at the beginning or the end of the column. The

extent to which there is instrument dwell volume or isocratic hold segments

within the method does not affect ko or 0.5 k�.
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SUMMARY

In this review, an attempt has been made to discuss all of the issues relevant to

optimization and scaling in HPLC. Optimization decisions are generally

governed by concerns such as maximizing efficiency and resolution, increas-

ing the speed of analysis, improving sensitivity, or reducing the amount of

mobile phase consumed and waste generated. It is, then, important to

consider what scaling may be needed in order to minimize band broadening

due to extra-column effects. The focus of the article has been on the math-

ematical concepts relevant to optimization and scaling. Hence, issues such

as the selection of mobile phase and stationary phase (which are not

generally approached mathematically) were not discussed.

Method optimization relationships can be used to make decisions about

how the linear velocity and column dimensions should be selected or

changed. It was demonstrated that the required flow rate, in order to achieve

a certain linear velocity, can be calculated as follows (relationship (4) in the

text):

FðmL=minÞ ¼ 0:15p1 uðcm/secÞ dcðmmÞ2

It was shown that, when the linear velocity is in the optimal range, and the

analyst wants to keep it there while additional optimization steps are carried

out, the flow should be adjusted in relation to the column diameter and

particle diameter as follows (relationship (5)). Exceptions to this are when

we are trying to optimize the speed of analysis with smaller diameter

particles or when trying to increase sensitivity with a mass-sensitive

detector. In these cases, we would choose to work above the optimal

velocity and, hence, deviate from relationship (5).

Fopt a d2
c=dp

In many cases, the preferred approach for optimization is to reduce the

particle diameter, as this will improve the total resolution, the speed of

analysis, and the sensitivity, simultaneously. However, reducing the particle

diameter has a significant penalty in terms of pressure. It should be noted

that, when the flow is adjusted so as to stay at the optimal linear velocity,

the pressure will change inversely with the cube of the particle diameter.

The relationships for pressure drop are reiterated below (relationships (6)

and (7) in the text).

DP ð psiÞ ¼
30778FðmL=minÞh ðcPÞLðcmÞ

dcðmmÞ2dpðmmÞ2

DP ð psiÞ ¼
14504 1 uðcm=secÞh ðcPÞLðcmÞ

dpðmmÞ2

Optimization and Scaling for Practicing Chromatographer 637

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
4
6
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



Optimization relationships are summarized in Table 3, along with comments

regarding their application. The dependence of sensitivity on column diameter

is a particular source of confusion and, hence, warrants a brief comment. It is

often stated that reducing the diameter of the column will result in improved

sensitivity. In fact, this is only true when dealing with a concentration-

sensitive detector, in cases where there is only a small volume of sample

available for injection. Even then, there are things which may partially offset

this effect. If dealing with spectroscopic detectors (which contain detection

cells), it will generally be required to reduce the dimensions of the cell when

the dimensions of the column are reduced (as per relationship (35)); and, there

will often be some signal-to-noise penalty associated with this reduction. The

right-most column of Table 2 provides multipliers which describe the depen-

dence of the signal-to-noise ratio on the pathlength (b) and cross section (c) of

the detection cell (these multipliers are based on idealized conditions). Finally,

when the diameter of the column is reduced, most of the extra-column effects

issues become more problematic. This can result in band broadening which

will also carry a signal-to-noise penalty due to the reduction in peak height. It

is important that the analyst is aware of these issues when making decisions

about whether to reduce the diameter of the column.

The optimization relationships presented in the text are valid for gradient

methods. However, with a gradient separation, there is a more complex interdepen-

dency of variables that makes optimization somewhat more difficult. It was shown

that, if we apply relationship (45), the situation is considerably simplified as:

. The relative retention times of the peaks will remain constant (if relation-

ships (48) and (50) are also used, as necessary).

. The average gradient capacity factor (k�) will remain constant.

. The degree of gradient compression (given by G) will remain constant.

. The optimal linear velocity will remain constant.

. Relationship (3) will still be valid, allowing substitution of dp in place of H

when we are operating near the minimum plate height.

If the analyst decides to adjust various parameters independently (i.e.,

does not follow relationship (45)), the effect of these adjustments will be

more difficult to predict and it will be difficult to use the mathematical

formulas. In these cases, it is probably best to utilize the stepwise procedure

described in the text to optimize a gradient method (pages 631–632).

The optimal linear velocity of a gradient method will generally be

somewhat higher than that which is predicted by the van Deemter equation,

due to the fact that increasing the linear velocity also results in an increase

in the average gradient capacity factor (see relationship (51)). This

“capacity factor effect” becomes more significant as we go to shorter

gradient times (tG), because these generally correspond to smaller values of

k� where the dependence of resolution on the capacity factor is stronger.

Hence, the optimal linear velocity of a gradient method will increase as the
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Table 3. Basic optimization relationships for packed columnsa

Attribute Relationship Comments

Efficiency and

resolution.

Relationships

(12) and (13)

N a L/dp

R a (L/dp)1/2

Efficiency and resolution can be increased by

increasing the column length and/or redu-

cing the particle diameter (while staying at

the optimal linear velocity). Reducing the

particle diameter is the preferred option as

increasing column length has a cost in terms

of sensitivity, analysis time, and solvent

consumption. When pressure is limiting, the

remaining option is to increase both column

length and particle diameter, with the former

increased by an amount somewhat greater

than the latter. This will, simultaneously,

cause efficiency and resolution to increase

while the pressure drop will decrease.

Therefore, substantial increases in efficiency

and resolution will be possible: with obvious

costs in terms of sensitivity, analysis time,

and solvent consumption.

Speed of analysis.

Relationships

(20), (21) and (22)

Analysis time a L/u

N/time a u/dp

R/time a u/(Ldp)1/2

To increase the speed of analysis, the analyst

should first evaluate reducing the particle

diameter, especially if the original method

utilizes a large particle. Increasing the linear

velocity will carry a tradeoff to the extent

that it moves us away from the optimal part

of the van Deemter curve. However, for

small diameter particles this is not signifi-

cant, and increasing the linear velocity is, in

fact, the most effective way to increase the

speed of analysis in these cases. Reducing

column length will increase the resolution

per unit time, but will carry some tradeoff in

terms of total efficiency and resolution.

In a situation where we have just the necessary

amount of resolution but want to increase the

speed of analysis, the simplest approach is to

reduce the column length and particle diam-

eter by the same factor (x). In this case effi-

ciency and resolution will remain constant

(see relationships (12) and (13)) while the

time of analysis would also decrease by x2

(assuming we adjust the linear velocity to

stay in the optimal range). However, the

pressure drop will also increase by x2, limit-

ing the extent to which we can make these

modifications. A step-wise procedure for

applying this technique to gradient methods

is provided in the text (page 634–635).

(continued )
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gradient time is decreased. A rule of thumb for estimating this was suggested

in the text (see item 4 on page 632).

It was suggested in the text that, to a first approximation, the presence of

instrument dwell volume and isocratic segments in a gradient method will

Table 3. Continued

Attribute Relationship Comments

Sensitivity.

Relationships

(26), (27), (28),

and (29)

S/N a M

Should be used for spectroscopic detectors,

when the injection volume will be scaled as

per relationship (33). For appropriate values

of M see Table 2. If the detection cell

volume will not be modified M will be

constant, and can be dropped.

Should also be used for non-spectroscopic

concentration-sensitive detectors

(e.g. conductivity), if M is dropped.

S/N a M/dc
2 (Ldp)1/2

Should be used for spectroscopic detectors,

when the injection volume will not be

scaled. If the detection cell volume will not

be modified M will be constant, and can be

dropped.

Should also be used for non-spectroscopic

concentration-sensitive detectors (e.g. con-

ductivity), if M is dropped.

S/N a u dc
2

Should be used for mass-sensitive detectors

when the injection volume will be scaled as

per relationship (33).

S/N a u/(Ldp)1/2

Should be used for mass-sensitive detectors

when the injection volume will not be

scaled.

Consumption

and waste.

Relationship (31)

Solvent consumed/waste

generated a dc
2 L

To reduce solvent consumption and waste we

can reduce column diameter or column

length. Although column diameter will have

a more substantial affect, several of the

extra-column effects are more sensitive to

reductions in column diameter than

reductions in column length. Therefore,

some combination of the two may be

advisable.

aThese relationships apply to gradient methods as well, when scaling is done as per relationship

(45). If relationship (45) is not applied the situation becomes more complicated as k�, G, and the

optimal linear velocity will all be variable, and relationship (3), which was used in many deri-

vations, is no longer valid. When evaluating the resolution or resolution per unit time of a

gradient method, it may also be necessary to utilize relationships (48) and (50): see comments

in Table 5 as to when relationships (48) and (50) are necessary.
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have an insignificant effect on peak width and, therefore, do not affect the

validity of the optimization relationships in Table 3.

Many of the formulas discussed in this article were derived using relation-

ship (3), which assumes that we are operating at (or near) the minimum plate

height at all times. In some cases, this assumption will not be valid, most likely

because the analyst may decide to work above the optimal velocity so as to

increase the speed of analysis or increase sensitivity when using a mass-

sensitive detector. With the smaller diameter particles (which are generally

used for modern analysis), this is not generally a significant concern

because, with these particles, one can work above the optimal velocity and

still be close to the minimum plate height (see Figure (1)). However, if

Table 4. Basic scaling relationships for packed columns

Attribute

Scaling

relationship Comments

Injection volume.

Relationship (33)

Vi a dc
2 (Ldp)1/2

These issues only need to be

considered when reducing the

dimensions of the column (L, dc,

and dp).

These relationships apply to gradient

methods as well, as long as

relationship (45) is applied.

It should be recalled that the following

issues are generally not critical with

gradient methods (with the

exception of early eluting peaks)

due to the focusing affect which

results from the weak mobile phase

at the beginning of the run:

† the quality and volume of the

injection

† the injection time

† the connecting tubing between the

injection system and the column

† the affect of any dead volume

regions upstream of the column.

Detector cell volume

and down-stream

dead volume.a

Relationship (35)

Vd a dc
2 (Ldp)1/2

Detector time

constant.b

Relationship (37)

t a (Ldp)1/2/u

Injection time.

Relationship (39)

tinj a (Ldp)1/2/u

Diameter and length

of connecting tubing.

Relationship (44)

l d4a dc
4 L dp

aThis relationship should only be considered a first approximation for down-stream

dead volume. Although dead volume regions upstream of the column are generally

more problematic than down-stream dead volume, there is no relationship between

allowable upstream dead volume and the dimensions of the column. Hence, there is

no formula for upstream dead volume and it is not relevant in a discussion of scaling.
bScaling the detector time constant will only be necessary when a change in column

dimensions causes the number of readings across the smallest peak of interest to drop

below a value of about 15.
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Table 5. Keeping relative retention times constant with gradient methods

Attribute to

be scaled

Scaling

relationship Comments

Linear

gradients.

Relationship

(45)

(tG F)/(dc
2 L)

The ratio should be kept constant and the

initial and final mobile phase compo-

sitions should be kept constant.

Use of this relationship allows us to keep

relative retention times, k�, the degree

of gradient compression (G), and the

optimal linear velocity constant. It will

also ensure that relationship (3), which

was used in many of the derivations, is

valid.

In cases where the linear velocity is in the

optimal range, and the analyst wants to

keep it there, the preferred approach is

to scale the flow rate in proportion to

the square of the column diameter and

to scale the gradient time in direct

proportion to column length.

Dwell-volume

and isocratic

segments at the

beginning of

the run.

Relationship

(48)

ðVD þ tiso; beginning � FÞ

F L

The ratio should be kept constant.

Application of this relationship is

required in order to maintain relative

retention times constant, by making

adjustments to account for instrument

dwell volume and any isocratic hold

segments at the beginning of the run. It

is also required when evaluating the

resolution or resolution per unit time

of a gradient method that contain early

eluting components.

Relationship (45) should first be applied

so we know how much the flow rate

will change.

Isocratic

segments in

the middle of

a complex

gradient

method.

Relationship

(50)

tiso, middle/L

The ratio should be kept constant.

Application of this relationship is

required in order to maintain relative

retention times constant when the

gradient method contains an isocratic

hold segment in the middle of the run.

It is also required when evaluating the

resolution or resolution per unit time

of gradient methods containing an

isocratic segment in the middle

of the run.
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working above the optimal velocity when using larger diameter particles,

relationship (3) will become a less valid approximation. In these cases, it

may be preferrable to leave the expressions in terms of H. A kinetic plot

such as in Figure 1 could then be used to obtain a good approximation of

what the value of H would be (or one could actually try to calculate it from

the van Deemter equation, though this is generally not convenient).

Once the decision about changing column dimensions is made, the second

step is to use the scaling relationships, summarized in Table 4, to make

decisions about what scaling may be necessary, in response to the changes in

column dimensions. Once again, when dealing with gradient methods, the

situation becomes more complicated if relationship (45) is not used. The

presence of dwell volume and isocratic hold segments in the method are

even less important for scaling relationships than was the case for the optimiz-

ation relationships. This is because, for the scaling relationships, all that matters

is the capacity factor at the beginning or the end of the column. The presence of

instrument dwell volume or isocratic hold segments within the method does not

affect this.

In Part II, relationships were discussed that allow one to maintain constant

relative retention times when working with gradient methods. These relation-

ships are summarized in Table 5. Relationship (45) gives the proper way to

scale with respect to linear gradient ramps. Relationships (48) and (50) give

the proper way to scale with respect to the dwell volume of the HPLC and

isocratic hold segments within a complex gradient method. As discussed

above, application of relationship (45) also allows the basic optimization

and scaling relationships (summarized in Tables 3 and 4) to be extended to

gradient methods: with relationships (48) and (50) only being needed when

evaluating the resolution or resolution per unit time of a gradient method.

Relationship (48) allows us to avoid having to modify the dwell volume

of the HPLC (which is very difficult), by adjusting the initial isocratic hold

time instead. If this option is not workable (e.g., due to an insufficient

initial hold step in the original method), an alternative is to program the

system to delay the injection of the sample. This approach can be used

when the flow rate and/or the length of the column will be reduced. The

“effective dwell volume” will be reduced by the product of the delay time

and the flow rate (the new flow rate, if the flow rate is changed).

Relationship (48) can also be useful in the context of a method transfer

when transferring to a system with a larger dwell volume. Delaying the

injection can be used when transferring to a system with a smaller dwell

volume.
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